Back to PCLR overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 13.09% |
| Test F1 score | 0.1366 |
| Hierarchical loss | 0.92099073 |
| P-adic loss (total) | 310.09010899 |
| P-adic loss (mean) | 0.47197886 |
| Prime base | 71 |
| Training samples | 2,766 |
| Test samples | 657 |
| Trained at | 2025-12-16T22:25:34+11:00 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 86 | 13.09% | 0.000000 | 0.000000 |
| p^3 | 17 | 2.59% | 0.000003 | 0.000047 |
| p^2 | 99 | 15.07% | 0.000198 | 0.019639 |
| p^1 | 147 | 22.37% | 0.014085 | 2.070423 |
| p^0 | 308 | 46.88% | 1.000000 | 308.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.