Back to PCLR overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 8.61% |
| Test F1 score | 0.0884 |
| Hierarchical loss | 0.91691505 |
| P-adic loss (total) | 717.67154424 |
| P-adic loss (mean) | 0.58825536 |
| Prime base | 71 |
| Training samples | 4,961 |
| Test samples | 1,220 |
| Trained at | 2026-02-02T05:30:18+11:00 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 105 | 8.61% | 0.000000 | 0.000000 |
| p^4 | 5 | 0.41% | 0.000000 | 0.000000 |
| p^3 | 18 | 1.48% | 0.000003 | 0.000050 |
| p^2 | 119 | 9.75% | 0.000198 | 0.023606 |
| p^1 | 259 | 21.23% | 0.014085 | 3.647887 |
| p^0 | 714 | 58.52% | 1.000000 | 714.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.