Back to PCLR overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 14.68% |
| Test F1 score | 0.1356 |
| Hierarchical loss | 0.92243658 |
| P-adic loss (total) | 452.36922607 |
| P-adic loss (mean) | 0.65751341 |
| Prime base | 71 |
| Training samples | 2,735 |
| Test samples | 688 |
| Trained at | 2025-12-16T22:25:39+11:00 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 101 | 14.68% | 0.000000 | 0.000000 |
| p^4 | 5 | 0.73% | 0.000000 | 0.000000 |
| p^3 | 19 | 2.76% | 0.000003 | 0.000053 |
| p^2 | 86 | 12.50% | 0.000198 | 0.017060 |
| p^1 | 25 | 3.63% | 0.014085 | 0.352113 |
| p^0 | 452 | 65.70% | 1.000000 | 452.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.