Back to PCLR overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 12.63% |
| Test F1 score | 0.1249 |
| Hierarchical loss | 0.92056867 |
| P-adic loss (total) | 496.39478549 |
| P-adic loss (mean) | 0.71218764 |
| Prime base | 71 |
| Training samples | 2,726 |
| Test samples | 697 |
| Trained at | 2025-12-16T22:25:42+11:00 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 88 | 12.63% | 0.000000 | 0.000000 |
| p^4 | 5 | 0.72% | 0.000000 | 0.000000 |
| p^3 | 8 | 1.15% | 0.000003 | 0.000022 |
| p^2 | 73 | 10.47% | 0.000198 | 0.014481 |
| p^1 | 27 | 3.87% | 0.014085 | 0.380282 |
| p^0 | 496 | 71.16% | 1.000000 | 496.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.