Back to PCLR overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 12.03% |
| Test F1 score | 0.1138 |
| Hierarchical loss | 0.92002635 |
| P-adic loss (total) | 318.46919246 |
| P-adic loss (mean) | 0.46154955 |
| Prime base | 71 |
| Training samples | 2,733 |
| Test samples | 690 |
| Trained at | 2025-12-16T22:25:45+11:00 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 83 | 12.03% | 0.000000 | 0.000000 |
| p^4 | 10 | 1.45% | 0.000000 | 0.000000 |
| p^3 | 14 | 2.03% | 0.000003 | 0.000039 |
| p^2 | 93 | 13.48% | 0.000198 | 0.018449 |
| p^1 | 174 | 25.22% | 0.014085 | 2.450704 |
| p^0 | 316 | 45.80% | 1.000000 | 316.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.