Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 17.30% |
| Test F1 score | 0.1296 |
| Hierarchical loss | 0.92481370 |
| P-adic loss (total) | 817.79280000 |
| P-adic loss (mean) | 0.67032200 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 4,961 |
| Test samples | 1,220 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 211 | 17.30% | 0.000000 | 0.000000 |
| p^4 | 6 | 0.49% | 0.000000 | 0.000000 |
| p^3 | 40 | 3.28% | 0.000003 | 0.000112 |
| p^2 | 91 | 7.46% | 0.000198 | 0.018052 |
| p^1 | 55 | 4.51% | 0.014085 | 0.774648 |
| p^0 | 817 | 66.97% | 1.000000 | 817.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.