Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 24.96% |
| Test F1 score | 0.1984 |
| Hierarchical loss | 0.93178360 |
| P-adic loss (total) | 366.56146000 |
| P-adic loss (mean) | 0.55793220 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 2,766 |
| Test samples | 657 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 164 | 24.96% | 0.000000 | 0.000000 |
| p^3 | 27 | 4.11% | 0.000003 | 0.000075 |
| p^2 | 61 | 9.28% | 0.000198 | 0.012101 |
| p^1 | 39 | 5.94% | 0.014085 | 0.549296 |
| p^0 | 366 | 55.71% | 1.000000 | 366.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.