Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 16.46% |
| Test F1 score | 0.1173 |
| Hierarchical loss | 0.92405810 |
| P-adic loss (total) | 782.17944000 |
| P-adic loss (mean) | 0.63437100 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 4,948 |
| Test samples | 1,233 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 203 | 16.46% | 0.000000 | 0.000000 |
| p^4 | 3 | 0.24% | 0.000000 | 0.000000 |
| p^3 | 41 | 3.33% | 0.000003 | 0.000115 |
| p^2 | 123 | 9.98% | 0.000198 | 0.024400 |
| p^1 | 82 | 6.65% | 0.014085 | 1.154930 |
| p^0 | 781 | 63.34% | 1.000000 | 781.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.