Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 21.80% |
| Test F1 score | 0.1626 |
| Hierarchical loss | 0.92891120 |
| P-adic loss (total) | 395.56464000 |
| P-adic loss (mean) | 0.57494860 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 2,735 |
| Test samples | 688 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 150 | 21.80% | 0.000000 | 0.000000 |
| p^4 | 4 | 0.58% | 0.000000 | 0.000000 |
| p^3 | 23 | 3.34% | 0.000003 | 0.000064 |
| p^2 | 77 | 11.19% | 0.000198 | 0.015275 |
| p^1 | 39 | 5.67% | 0.014085 | 0.549296 |
| p^0 | 395 | 57.41% | 1.000000 | 395.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.