Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 15.68% |
| Test F1 score | 0.1250 |
| Hierarchical loss | 0.92334116 |
| P-adic loss (total) | 815.21576000 |
| P-adic loss (mean) | 0.65531814 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 4,937 |
| Test samples | 1,244 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 195 | 15.68% | 0.000000 | 0.000000 |
| p^4 | 2 | 0.16% | 0.000000 | 0.000000 |
| p^3 | 55 | 4.42% | 0.000003 | 0.000154 |
| p^2 | 93 | 7.48% | 0.000198 | 0.018449 |
| p^1 | 85 | 6.83% | 0.014085 | 1.197183 |
| p^0 | 814 | 65.43% | 1.000000 | 814.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.