Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 21.52% |
| Test F1 score | 0.1593 |
| Hierarchical loss | 0.92865527 |
| P-adic loss (total) | 418.47620000 |
| P-adic loss (mean) | 0.60039630 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 2,726 |
| Test samples | 697 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 150 | 21.52% | 0.000000 | 0.000000 |
| p^4 | 7 | 1.00% | 0.000000 | 0.000000 |
| p^3 | 32 | 4.59% | 0.000003 | 0.000089 |
| p^2 | 57 | 8.18% | 0.000198 | 0.011307 |
| p^1 | 33 | 4.73% | 0.014085 | 0.464789 |
| p^0 | 418 | 59.97% | 1.000000 | 418.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.