Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 22.46% |
| Test F1 score | 0.1701 |
| Hierarchical loss | 0.92951250 |
| P-adic loss (total) | 405.43530000 |
| P-adic loss (mean) | 0.58758740 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 2,733 |
| Test samples | 690 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 155 | 22.46% | 0.000000 | 0.000000 |
| p^4 | 8 | 1.16% | 0.000000 | 0.000000 |
| p^3 | 28 | 4.06% | 0.000003 | 0.000078 |
| p^2 | 64 | 9.28% | 0.000198 | 0.012696 |
| p^1 | 30 | 4.35% | 0.014085 | 0.422535 |
| p^0 | 405 | 58.70% | 1.000000 | 405.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.