Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 14.72% |
| Test F1 score | 0.1039 |
| Hierarchical loss | 0.92247500 |
| P-adic loss (total) | 842.06360000 |
| P-adic loss (mean) | 0.67744460 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 4,938 |
| Test samples | 1,243 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 183 | 14.72% | 0.000000 | 0.000000 |
| p^4 | 1 | 0.08% | 0.000000 | 0.000000 |
| p^3 | 37 | 2.98% | 0.000003 | 0.000103 |
| p^2 | 107 | 8.61% | 0.000198 | 0.021226 |
| p^1 | 74 | 5.95% | 0.014085 | 1.042254 |
| p^0 | 841 | 67.66% | 1.000000 | 841.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.