Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 25.18% |
| Test F1 score | 0.1823 |
| Hierarchical loss | 0.93198264 |
| P-adic loss (total) | 394.46268000 |
| P-adic loss (mean) | 0.57085770 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 2,732 |
| Test samples | 691 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 174 | 25.18% | 0.000000 | 0.000000 |
| p^4 | 5 | 0.72% | 0.000000 | 0.000000 |
| p^3 | 26 | 3.76% | 0.000003 | 0.000073 |
| p^2 | 60 | 8.68% | 0.000198 | 0.011902 |
| p^1 | 32 | 4.63% | 0.014085 | 0.450704 |
| p^0 | 394 | 57.02% | 1.000000 | 394.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.