Back to PCNN overview · Back to main index
| Metric | Value |
|---|---|
| Test accuracy | 16.28% |
| Test F1 score | 0.1186 |
| Hierarchical loss | 0.92388840 |
| P-adic loss (total) | 812.10370000 |
| P-adic loss (mean) | 0.65439457 |
| Prime base | 71 |
| Hidden layer size | 27 |
| Max tags | 32 |
| Training samples | 4,940 |
| Test samples | 1,241 |
| Agreement | Count | Share | Cost per mistake | Total contribution |
|---|---|---|---|---|
| Exact match | 202 | 16.28% | 0.000000 | 0.000000 |
| p^4 | 4 | 0.32% | 0.000000 | 0.000000 |
| p^3 | 51 | 4.11% | 0.000003 | 0.000142 |
| p^2 | 96 | 7.74% | 0.000198 | 0.019044 |
| p^1 | 77 | 6.20% | 0.014085 | 1.084507 |
| p^0 | 811 | 65.35% | 1.000000 | 811.000000 |
P-adic loss measures the distance between predicted and true taxonomy using p-adic metric (base 71). Lower values indicate closer predictions in the taxonomy hierarchy. This metric is shared with the umllr model for comparison.